

Farm Size Growth in GermanyThe Measure Matters

Heiko Hansen

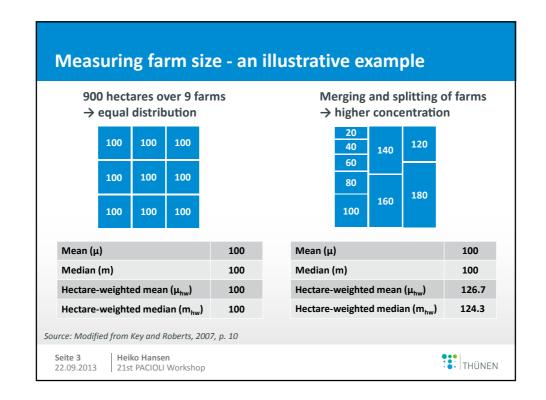
Thünen Institute of Farm Economics

21st Pacioli Workshop Orenas Castle, 24th September

Structure of the presentation

- **1.** Motivation \rightarrow exploring structural change
- **2.** Alternative measures \rightarrow to weight or not ...
- **3.** Empirical analysis \rightarrow results from Germany
- **4.** Estimation vs. calculation \rightarrow level of precision
- **5.** Conclusions \rightarrow ... and further working steps

Seite 1 22.09.2013



What does the literature tell us?

- Unfortunately both of the more common measures ... (the arithmetic mean ... and the median) are sensitive to the total number of observations ... (Lund and Price, 1998, p. 102).
- [The mean or median] ... are extremely sensitive to the definition of a farm, which has changed implicitly or explicitly over time ... (Roberts and Key, 2008, p. 628).
- An alternative approach [...] is to give less emphasis to the total number of holdings and to pay more attention to the distribution of the land between holdings ... (Britton, 1950, p. 191).
- [The weighted median] ... is less arbitrary than the mean or median since a change in the number of small farms cannot alter it if industry output is not appreciably affected (Weiss, 1963, p. 74).

Seite 2 22.09.2013

Measures of farm size (I)

Mean (µ)

$$\mu = \frac{1}{n} \times \sum_{i=1}^{n} uaa_{i}$$

utilised agricultural area

Hectare-weighted mean (μ_{hw})

$$\mu_{hw} = \sum_{i=1}^{n} \left(uaa_i \times \frac{uaa_i}{\sum_{i=1}^{n} uaa_i} \right)$$

$$= \sum_{i=1}^{n} \left(\frac{uaa_i^2}{\sum_{i=1}^{n} uaa_i} \right)$$

Seite 4 22.09.2013 Heiko Hansen 21st PACIOLI Workshop

Measures of farm size (I)

Mean (µ)

$$\mu = \frac{1}{n} \times \sum_{i=1}^{n} uaa_{i}$$

utilised agricultural area

$$\mu = \sum_{i=1}^{n} \left(uaa_i \times \frac{wf_i}{\sum_{i=1}^{n} wf_i} \right) = \frac{\sum_{i=1}^{n} (uaa_i \times wf)_i}{\sum_{i=1}^{n} wf_i}$$

with FADN weighting factors (wfi)

Hectare-weighted mean (μ_{hw})

$$\mu_{hw} = \sum_{i=1}^{n} \left(uaa_i \times \frac{uaa_i}{\sum_{i=1}^{n} uaa_i} \right)$$

$$=\sum_{i=1}^{n}\left(\frac{uaa_{i}^{2}}{\sum_{i=1}^{n}uaa_{i}}\right)$$

$$\mu_{hw} = \sum_{i=1}^{n} \left(uaa_i \times \frac{uaa_i}{\sum_{i=1}^{n} uaa_i} \right) \qquad \mu_{hw} = \sum_{i=1}^{n} \left(uaa_i \times \frac{uaa_i \times wf_i}{\sum_{i=1}^{n} (uaa_i \times wf_i)} \right)$$

$$= \sum_{i=1}^{n} \left(\frac{uaa_i^2 \times wf_i}{\sum_{i=1}^{n} (uaa_i \times wf_i)} \right)$$

with FADN weighting factors (wf_i)

Seite 5

Heiko Hansen 21st PACIOLI Workshop

THÜNEN

Measures of farm size (II)

Median (m)

$$m = uaa_{\frac{n+1}{2}}$$
 or

$$m = \frac{1}{2} \left(uaa_{\frac{n}{2}} + uaa_{\frac{n}{2}+1} \right)^*$$

Hectare-weighted median(m_{hw})

$$m = uaa_{\gamma}$$
;

$$\sum_{i=1}^{\gamma-1}uaa_i<\frac{1}{2}\sum_{i=1}^nuaa_i\geq\sum_{i=\gamma}^nuaa_i$$

* For odd or even numbers, respectively.

Seite 6 22.09.2013 Heiko Hansen 21st PACIOLI Workshop

Measures of farm size (II)

Median (m)

$$m = uaa_{\underline{n+1}}$$
 or

$$m = \frac{1}{2} \left(uaa_{\frac{n}{2}} + uaa_{\frac{n}{2}+1} \right)^*$$

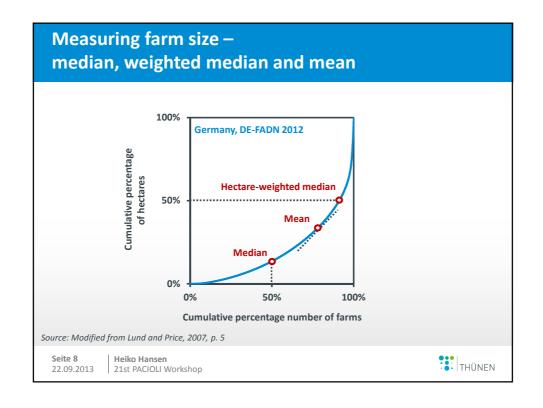
$$m = uaa_{\gamma} \quad \text{with} \qquad \sum_{i=1}^{\gamma-1} wf_i < \frac{1}{2} \sum_{i=1}^n wf_i \geq \sum_{i=\gamma}^n wf_i$$

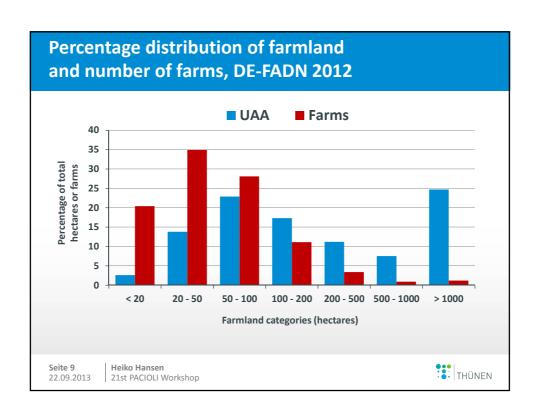
with FADN weighting factors (wfi)

Hectare-weighted median(m_{hw})

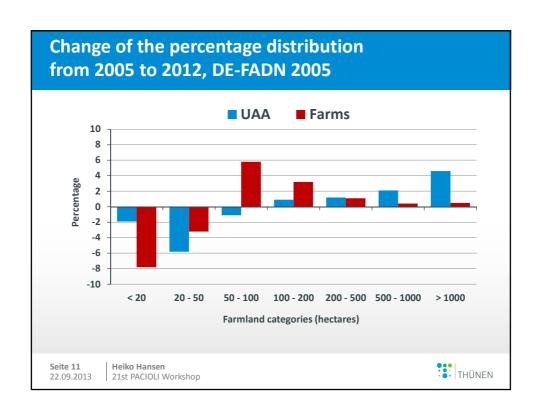
$$m = uaa_{\gamma}$$
 ;

$$\sum_{i=1}^{\gamma-1}uaa_i<\frac{1}{2}\sum_{i=1}^nuaa_i\geq\sum_{i=\gamma}^nuaa_i$$

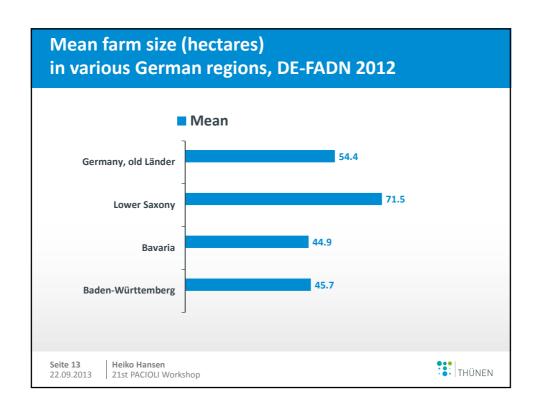

$$m = uaa_{\gamma}$$
 with
$$\sum_{i=1}^{\gamma-1} (wf_i \times uaa_i)$$

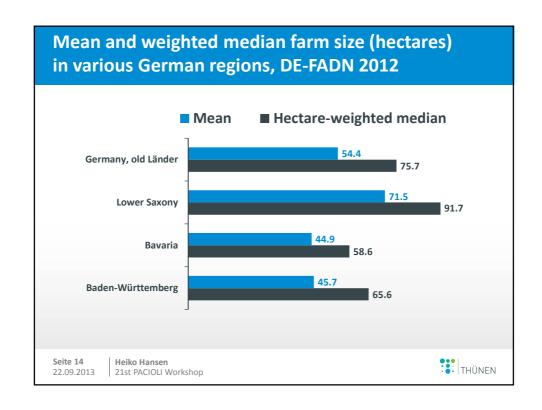

$$<\frac{1}{2}\sum_{i=1}^{n}(wf_{i}\times uaa_{i})\geq\sum_{i=\nu}^{n}(wf_{i}\times uaa_{i})$$

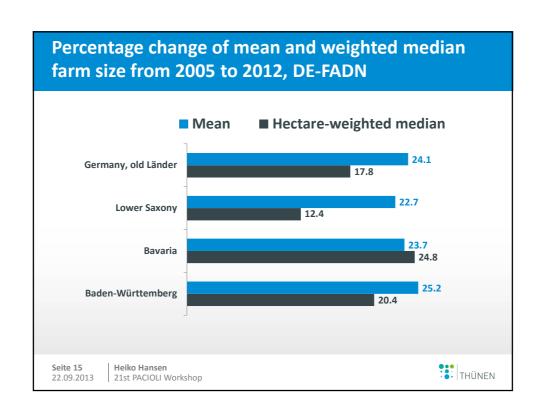
* For odd or even numbers, respectively. with FADN weighting factors (wf_i)


Seite 7 22.09.2013 Heiko Hansen 21st PACIOLI Workshop

THÜNEN






Germany, DE-FADN				
	2005	2012	difference	%-difference
Mean	64.5	86.0	21.5	33.4
Median	34.1	44.3	10.2	29.9
Hectare-weighted mean	552.4	629.8	77.4	14.0
Hectare-weighted median	106.4	145.4	39.0	36.7
Germany, old Länder, DE-FADN				
Hectare-weighted mean	80.4	99.7	19.3	24.0
Hectare-weighted median	64.3	75.7	11.4	17.7

Germany, DE-FADN 2012				
	All farms	Farms > 5 hectares	%-difference	
Number of farms	192 758	182 525	-5.3	
Total area (hectare)	16 583 382	16 562 941	-0.1	
Mean	86.0	90.7	5.5	
Median	44.3	47.1	6.3	
Hectare-weighted mean	629.8	630.5	0.1	
Hectare-weighted median	145.4	145.6	0.1	

Some notes on estimating (hectare-)weighted medians

- In order to calculate the (weighted) median, data on the level of individual farms is necessary (as is the case with FADN).
- In the absence of this data, the weighted median can be estimated by interpolation from percentage distributions.
 - Britton (1950) uses Lagrange's method of interpolation.
 - Lund and Price (1998) use cubic spline interpolation.
- Algebraically, the cumulative percentage numbers of hectares for the various size classes are used as x and y values ...
 - ... to find the polynom satisfying $F(x_i) = y_i$ and
 - ... to compute the weighted median $m_{hw} = F(50)$.

Seite 16 22.09.2013 Heiko Hansen 21st PACIOLI Workshop

Comparison of calculated and estimated hectare-weighted medians, DE-FADN 2010

Farmland categories (hectares)	Percentage of total	Cumulative percentage (inverse)
50 - 100	23.6	77.9
100 - 200	16.8	54.3
200 - 500	10.6	37.5
500 - 1000	6.8	26.9
> 1000	20.2	20.2

* Based on Lagrange's method of interpolation.

Seite 17

Heiko Hansen Seite 17 Heiko Hansen 22.09.2013 21st PACIOLI Workshop

Comparison of calculated and estimated hectare-weighted medians, DE-FADN 2010

Farmland categories (hectares)	Percentage of total	Cumulative percentage (inverse)
50 - 100	23.6	77.9
100 - 200	16.8	54.3
200 - 500	10.6	37.5
500 - 1000	6.8	26.9
> 1000	20.2	20.2

Results for the weighted median

Estimation m_{hw} = 123.6 * Calculation $m_{hw} = 115.3$

* Based on Lagrange's method of interpolation.

Heiko Hansen 21st PACIOLI Workshop

Calculated and estimated hectare-weighted medians, DE-FADN and agricultural census

	Estimation* DE-FADN	Calculation DE-FADN	Estimation* (census)
Germany 2012	144.4	145.4	-
Lower Saxony 2012	91.7	91.7	-
Germany 2010	123.6	115.3	116.9
Germany 2007	132.5	110.9	109.1
Germany, old Länder 2010	63.4	67.6	73.7
Germany, old Länder 2007	64.4	69.0	68.1

st Based on Lagrange's method of interpolation.

Seite 19 Heiko Hansen 22.09.2013 21st PACIOLI Workshop

THÜNEN

Differences between measures of average farm size between FADN and agricultural census data

	Hectare-weighted median		Mean	
	Calculation DE-FADN	Estimation* (census)	Calculation DE-FADN	Calculation (census)
Germany 2010	115.3	116.9	68.6	55.8
Germany 2007	110.9	109.1	67.6	52.2
Germany, old Länder 2010	67.6	73.7	46.2	40.6
Germany, old Länder 2007	69.0	68.1	47.0	37.9

* Based on Lagrange's method of interpolation.

22.09.2013

Heiko Hansen 21st PACIOLI Workshop

Conclusions (I)

- Hectare-weighted measures can complement analyses based on the more common (unweighted) mean and median
 - as they better reveal land concentration and are less sensitive to the inclusion or exclusion of small farms.
- However, hectare-weighted means are particularly sensitive to outliers at the upper end of the scale,
 - so that for distributions where large farms control most of the farmland results can be difficult to interpret.
- In the case of summary statistics instead of individual farm data, the weighted median can be estimated by interpolation.
 - However, results depend on the number of x and y values as well as the selected farm categories.

Seite 21

Conclusions (II)

- Land concentration in Germany can be clearly demonstrated by using hectare-weighted measures.
- Given the distribution of farmland within Germany, i.e. importance of large farms in the new Länder, the hectareweighted median is preferred to the hectare-weighted mean.
- Differences in average farm size between DE-FADN and agricultural census data are smaller if they are based on hectare-weighted medians than if they are based on (unweighted) means.

Seite 22 22.09.2013 Heiko Hansen 21st PACIOLI Workshop

Further working steps

- ... can examine
- systematically to what extent the alternative measures of farm size differ between FADN and agricultural census data.
- the trends in farm size growth using other measures like number of animals (e.g. milk cows) or standard output.
- and compare average farm size based on weighted medians across countries using exact calculation or estimation.
 (see efforts of the OECD Network for Farm Level Analysis)
- how results differ if alternative methods of interpolation are applied for the estimation of weighted medians.

Seite 23

